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In this paper, we introduce the notion of subcell resolution, which is based on the observa- 
tion that unlike point values, cell-averages of a discontinuous piecewise-smooth function con- 
tain information about the exact location of the discontinuity within the cell. Using this obser- 
vation we design an essentially non-oscillatory (ENO) reconstruction technique which is exact 
for cell averages of discontinuous piecewise-polynomial functions of the appropriate degree. 
Later on we incorporate this new reconstruction technique into Godunov-type schemes in 
order to produce a modification of the EN0 schemes which prevents the smearing of contact 
discontinuities. 0 1989 Academic Press, Inc. 

1. INTRODUCTION 

In [6-81 we have introduced a class of essentially nonoscillatory (ENO) schemes 
that generalizes Godunov’s scheme [2] to a high order of accuracy. 

In this paper we present a modification of the EN0 schemes which is designed 
to prevent smearing of linear discontinuities. This is done by adding a correction 
term to the numerical flux of the EN0 scheme. First, we shall derive a correction 
term to account for discontinuities in the scalar constant coefficient case. Later we 
shall apply the scalar correction to the linearly degenerate characteristic lield in the 
Euler equations in order to improve the resolution of contact discontinuities. 

Let {ZjX [t,, t,,+I)}, where Zj= Cxj-1/2, xj+1/21, x, = crh, t, = kz, be a partition of 
R x R +. Let ~7; be the “cell-average” of u at time t,, i.e., 

1 q = - 
I h s 

u(x, t,) dx. (1.1) 

* Research was supported under NSF Grant DMS85-03294, DARPA Grant in the ACMP Program, 
ONR Grant NOOO14-86-K-0691, NASA Ames Interchange NCA2-185, and NASA Langley Grant 
NAGl-270. Also research was partially supported under the National Aeronautics and Space 
Administration under NASA Contract NASl-18107 while the author was in residence at the Institute for 
Computer Applications in Science and Engineering (ICASE), NASA Langley Research Center, 

Hampton, VA 23665-5225. 

148 
OO21-9991/89 $3.00 
Copyrlghf 0 1989 by Academic Press, Inc. 
All rights of reproductmn in any form reserved. 



EN0 SCHEMES 149 

The cell-average of the solution to the initial value problem 

u, +f(u)x = 0, 4% 0) = %l(x) 

satisfies 

Un+1='~-'[JI(xj+1/2,tn;U)-~Xj--1,*, t,;U)], J 

where A = r/h and 

(1.2) 

(1.3a) 

(1.3b) 

The EN0 schemes can be written in the standard conservation form 

II;+’ =u;-12(-fj+1,2 -.f- I/*) s CEh(z) '""]j; (1.4a) 

here E, denotes the numerical solution operator and A+ ,,*, the numerical flux, 
denotes a function of 2k variables 

A+ l/2 =.f($- k + 1, . . . . vi”+ k) (1.4b) 

which is consistent with the flux f(u) in (1.2), in the sense that flu, u, . . . . u) =f(u). 
Unlike standard difference schemes, uy in the EN0 schemes is a high-order 
approximation to the cell-average ~77, and not to the point value u(x,, t,). Setting 
UT = ti; in the numerical scheme (1.4) and comparing it to relation (1.3), we see that 
if the numerical flux fj + 1,2 =f( tiy- k + r, . . . . CJ’+ k) can be expanded as 

f( ti;- kfl? ...Y ~;+k)=~~~fwj+,,* 9 t,+?))dy+d(xj+1/2)h’+O(h’+‘) 

(1Sa) 

then the truncation error 

q+l- [& .u”]j=~[d(xj+,,,)-d(xj-,,,)]h’+O(h’+’), (1Sb) 

is O(h’+ ‘) wherever d(x) is Lipschitz continuous, i.e., the scheme (1.4) is rth order 
accurate in the sense of cell averages. 

The most important ingredient in the EN0 schemes is a preocedure to 
reconstruct a piecewise-smooth function W(X) from its given cell-averages (Wj}. This 
reconstruction, which we denote by R(x; w), is a piecewise-polynomial function of 
x that has a uniform polynomial degree (r - 1) and satisfies: 

(i) at all points x for which there is a neighborhood where w is smooth 

R(x; I+)= w(x)+e(x)h’+O(h’+‘); (1.6a) 
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(ii) conservation in the sense of 

1 
s 
xi+ 112 

i R(l;3)dc= Sj; 
*,-l/2 

(1.6b) 

(iii) it is essentially non-oscillatory 

TV(R(.; W))<TV(+)+U(hlfP), P > 0, (1.6~) 

where TV denotes total variation in x. 
Using such a reconstruction (1.6) we can express the abstract form of the EN0 

schemes by 

Eh(~).W=A(Z).E(~).R(.;W). (1.7a) 

Here ,4(Z) is the cell-averaging operator 

(1.7b) 

and E(t) is the exact evolution operator of the IVP (1.2), i.e., 

u( .) t) = E(t)u,. (1.7c) 

We note that (1.7a) with the piecewise constant reconstruction 

R(x; w)= Gj for xi- 1/2GxGxj+1/2 (1.8) 

is exactly the first-order accurate Godunov’s scheme Cl]; (1.7a) with the piecewise 
linear reconstruction 

R(x; W)= Wj+Sj(x-x,.) for xi- 1/2Gxcxj+1/29 (1.9a) 

where 

Sj = W,(Xj) + U(h), (1.9b) 

is the abstract form of the second-order accurate extensions to Godunov’s scheme 
described in [6-8 3. We shall refer to these schemes as MUSCL-type schemes due 
to their similarity to van Leer’s work in [9]. 

In the first-order case (1.8), the scheme (1.7a) can be expressed in the conserva- 
tion form (1.4) with the numerical flux 

A+ 112 =f%i”, vi”+ 1); (1.10) 
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here fR(ul, u2) is an approximation to the flux at the origin in a Riemann problem 
with u1 to the left and u2 to the right. 

In the second-order case (1.9), the numerical flux of the abstract scheme cannot 
be expressed in a simple closed form, and we approximate it by 

(l.lla) 

where 

u;+ 1j-J = II; + h( 1 - nui”, S,“/2, ~iR,1,2=uin+l-h(1+3Lur+l)Sjn+~/2; (l.llb) 

here a; =fl(ujn). 
In this paper we pay special attention to the second-order accurate scheme 

(l.ll), because at present this seems to be the state of the art. This class of second- 
order schemes (with various choices of Sy) performs rather well in smooth regions 
and shocks. However, it exhibits excessive smearing of linear discontinuities, i.e., 
contact discontinuitites. Usually such discontinuities are smeared more and more in 
time at the ate O(nli3), where n is the number of time-steps. To understand this 
smearing we note in (1.7) that whenever a discontinuity in the reconstruction R is 
propagated by the evolution operator E into the interior of the cell, then the cell- 
averaging operator ,4(Z) replaces this sharp discontinuity by a smeared transition. 
In the linear case there is nothing to stop this process and therefore it goes on 
forever. In the case of a shock wave, the fact that the characteristics converge into 
the shock counteracts the smearing, and a steady progressing profile is obtained. 

The above observation is the basis for the artificial compression concept [3]. In 
order to prevent the excessive smearing of a linear discontinuity one can artificially 
induce convergence of the numerical characteristic field at each monotone strip of 
the solution. This can be accomplished by modifying the expression of the slopes SJ 
or by adding a corrective term to the numerical flux ( 1.11) (see [4]). The main 
advantage of artificial compression is that it is easy to use. The primary disadvan- 
tage is that one has to be extra careful (which also means to do a lot of checking...) 
not to generate unphysical discontinuities by applying it too strongly, where it need 
not be applied at all. 

The piecewise-parabolic method (PPM) of Colella and Woodward [1] includes 
a mechanism to detect contact discontinuities and to correct the scheme by using 
a “steeper” reconstruction. The PPM proved itself to be a robust high resolution 
scheme in a large number of numerical tests [ 111. In this paper we present a techni- 
que, which we call “subcell resolution,” that is close in spirit to the PPM but is 
somewhat different in its methodology. 

The present scheme is a “souped up” version of (1.11) in which the linear advec- 
tion part is boosted to third-order accuracy (in L,-sense) and is capable of 
propagating linear discontinuities perfectly (within third-order accuracy). The main 
ingredient in the new method is the observation that the information in 
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cell-averages of a discontinuous function, unlike that of point values, contains the 
location of the discontinuity within the cell, e.g., the cell-averages Wj, 

l ULY j,<-1 

wj= u‘$,f, j=O 

urn j> 1, 

with u,,, between uL and uR, are identical to those of the step-function 

(1.12a) 

w(x) = 
UL x<(e-;)h 

x>(t)-$)h, e=(UR-uM)/(UR-UL). 
(1.12b) 

uR 

Using this observation we can modify the EN0 reconstruction of [7] to recover 
exactly any discontinuous quadratic function from its cell-averages. 

In order to retain the relative simplicity of the numerical scheme (1.11) we use 
the new reconstruction to correct only the linear advection part. The new numerical 
flux is 

J;+ 112 =-fiE+N$Z + i?j+ l/2 i (1.13) 

here g,+ 1,2 is the flux through xj+ 1,2 due to the linear advection of the difference 
between the modified reconstruction and the piecewise-linear one (1.9). In the 
constant coefficient case the scheme (1.13) is exact for discontinuous quadratic 
initial data. 

Later on in this paper we present the extension of the “subcell resolution” 
concept to any finite order of accuracy and also extend the scheme to the Euler 
equations of gas dynamics. 

2. EN0 RECONSTRUCTION 

In this section, we describe one of the techniques to obtain an EN0 reconstruc- 
tion Given cell-averages { wj} of a piecewise smooth function w(x), we observe that 

I 
x,+ 112 

hw,= W(Y) 4 = w(xj+ 112) - @‘(xj- 1/2), (2.la) 
x, I;2 

where 

w(x) = j- MY) 4 
x0 

(2.lb) 

is the primitive function of w(x). Hence we can easily compute the point values 
{ W(x,+ ,,,)} by summation 

W(xi+,,2)=h 2 Wj. 
j = io 

(2.2) 
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Let H,(x; U) be an interpolation of u at the points { yj}, which is accurate to 
order m, i.e., 

Hm(Yji u)=“(Yj), (2.3a) 

-$Hm(n;u)=~,U(x)+O(hm+l-‘), O<lIm. (2.3b) 

We obtain our “reconstruction via primitive function” technique by defining 

R(x; W) = $ H,(x; W). (2.4) 

Relation (1.6a) follows immediately from (2.3b) with 1= 1 and the definition (2.1); 
i.e., 

R(x; W) = g H,(x; W) = $ W(x) + O(h’) 

= w(x) + O(K). 

Relation (1.6b) is a direct consequence of (2.3a) and (2.2); i.e., 

A(Z,)R( .; b) =; j;;; -$ H,(x, W) dx 

=i CHr(xj+1/2i W) - H,(Xj- 1/2; WI 

To obtain an EN0 reconstruction, we take H, in (2.4) to be the new EN0 
interpolation technique of the author [S]. In this case, H,,,(x; U) is a piecewise- 
polynomial function of x of degree m, which is defined (omitting the u dependence) 
by 

Hm(x; U) = qj+ 1/2(x) for YjGY GYj+ 1, (2Sa) 

where qj+ 1,2 is the unique polynomial of degree m that interpolates u at the m + 1 
points 

Sm(i)E {Yi+l3...9Yi+mj (2Sb) 

for a particular choice of i = i(j) (to be described in the following). To satisfy (2.3a), 
we need 

4j+1/2(.Yj)=4Yj)9 4j+ 1/2(Yj+ lJcu(Yj+ 1); 
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therefore, we limit our choice of i(j) to 

j-m+ 1 <i(j)<j. (2Sc) 

The EN0 interpolation technique is nonlinear: At each interval [yi, yj+ ,I, we 
consider the m possible choices of stencils (2Sb) subject to the restriction (2.5~) and 
assign to this interval the stencil in which u is “smoothest” in some sense; this is 
done by specifying i(j) in (2.5b). 

The information about the smoothness of u can be extracted from a table of 
divided differences. The kth divided difference of U, 

uCYi3 Yi+ 12 *.., Yi+kl E uCMi)l, (2.6a) 

is defined inductively by 

d&(i)1 = 4Yi) (2.6b) 

and 

uC&(i)l=(4kl(i+ 111 -UCS,-,(i)l)l(Yi+k-Yi). (2.6~) 

If u(x) is m times differentiable in [ yi, yi+,J then 

uCS,(i)l = --!$ @)(O, forsome yi<<<yi+,. (2.7a) 

If U(~)(X) has a jump discontinuity in [y,, yi+,] then 

u[S,(i)] = O(h-“+P[~‘P’]), ObpGm-1 (2.7b) 

([u@‘] in the RHS of (2.7b) denotes the jump in the p th derivative). 
Relations (2.7) show that Ju[S,(i)]( is a measure of the smoothness of u in S,(i) 

and therefore can serve as a tool to compare the relative smoothness of u in various 
stencils. The simplest algorithm to assign S,(i(j)) to the interval [ yj, yj+ ,] is the 
following: 

ALGORITHM I. Choose i(j) so that 

bCUi(i))lI = min j--m+l~i~j {l”CsAi)ll >. (2.8) 

Clearly (2.8) selects the “smoothest” stencil, provided that h is sufficiently small. 

In order to make a sensible selection of stencil also when h is not sufliciently 
small, i.e., in the “pre-asymptotic” case, we prefer to use the following hierarchial 
algorithm: 
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ALGORITHM II. Let ik(j) be such that S,(i,(j)) is our choice of a (k + 1)-point 
stencil for [y], yj+ i]. Obviously, we have to set 

G(i) =j (2.9a) 

To choose ik + i(j), we consider as candidates the two stencils 

S,“+l=sk+l(ik(j)-l), (2.9b) 

SkR+ 1 = Sk+ l(ik(j))T (2.9~) 

which are obtained by adding a point to the left of (or to the right of) S,(i,(j)), 
respectively. We select the one in which u is relatively smoother, i.e., 

ik+l j)- 
( - 

if luCG+ 11l < l~C~k”+Ill 
otherwise. 

(2.9d) 

Finaly, we set i(j) = i,(j). 

Using Newton’s form of interpolation, we see that the polynomials (qk(x)}, 
1 <k < m, corresponding to the stencils Sk = sk(ik(j)) selected by Algorithm II, 
satisfy the relation 

qk+I(X)=qk(X)+UCSk+ll n (x-Y). 
ye.9 

(2.9e) 

This shows that the choice made in (2.9d) selects qk+ i to be the one that deviates 
the least from qk. It is this property that makes Algorithm II meaningful also for 
h in the pre-asymptotic range. 

3. EN0 RECONSTRUCTION WITH SUBCELL RESOLUTION 

In this section, we show how to modify the EN0 reconstruction of the previous 
section so as to allow for the recovery of discontinuities in the interior of the cells. 
To illustrate the procedure, we first consider a discontinuous piecewise polynomial 
function w(x) of the form 

w(x) = 
I 
Pdx), X<Xd 
PR(X), x>xd, 

(3.la) 

where PL(x) and PR(x) are polynomials of degree less than or equal to S, 

deg(pd <s, deg(P,) <s. (3.lb) 

We assume that w(x) is actually discontinuous at xd, i.e., 

PL(Xd) f P&d) (3.lc) 



156 AM1 HARTEN 

and that the discontinuity is located in the interior of the interval Z,, 

(See Fig. la.) 

(3.ld) 

Next we denote the cell-averages of w(x) in (3.1) by {tij} and consider the EN0 
reconstruction R(x; W) applied to these data. To simplify our presentation let us 
denote the polynomial defining R(x; G) in the cell 4 by Rj(x; W). Clearly, provided 
h is sufficiently small, the stencils assigned to cells (Zk}, j # 0, are selected from the 
smooth part of the function. Therefore it follows from (2.3)-(2.5) that 

Rj(x; W) = PL(x) + O(W) for j<-1 

Rj(x; W) = P&c) + O(W) for ja 1. 
(3.2) 

R(x; i4j) in Z, does not introduce spurious oscillations; however, it does not provide 
an accurte approximation to the discontinuous function w(x) either (see Fig. lb). 
Using (3.2) and the information contained in the cell-average sO, we can easily rec- 
tify this situation as follows: We extend Rwl(x; W) to a point z in Z,, from the left, 
and extend R,(x; G) to z from the right and then approximate the location of the 
discontinuity in the cell I, by finding a value of z that will fit the cell average W0 
(see Fig. lc). This is done by finding a root of the algebraic equation F,(z) =O, 
where 

.(z)=$ R~,(x;It)d~+~~“~R,(x;~)dx}-G,,. 
x-112 i 

(3.3a) 

When h is sufficiently small, the data near the cell I,, approach those of a step- 
function. Therefore, as in (1.12) we expect to have 

Fdx-I,,) ~w+2)~0 (3.3b) 

and a single root of F,(z) = 0 in ZO; we denote this root by BO, 

F,( e,) = 0. (3.3c) 

It follows from (3.2) that 

180 - Xdl = 0(/l’). (3.3d) 

What we mean by “EN0 reconstruction with subcell resolution” is the modified 
EN0 reconstruction Z?(x; W) which is defined in this case by 

gj(x; W) = Rj(x; W) for j#O (3.4a) 

1(x; W) = R-,(x; tT, for x_,,,<x<e, 
R,(x; @I for e. K x < x,,, . 

(3.4b) 
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FIG. 1. (a) W(X) in (3.1); circles denote cell-averages { KJ,}. (b) The EN0 reconstruction R(x; G). The 
circles denote the given values of the cell-averages {E,}. (c)The modified EN0 reconstruction with 
subcelle resolution &x; W) (3.4). The circles denote the given values of the cell-averages {G,}. 
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Clearly it follows from (3.2) and (3.3d) that &x; W) is an O(V) approximation to 
w(x) in the L, sense, i.e., for any a and h, 

J b I&x; W) - w(x)1 dx = 0(/z’). 
u (3.5) 

We observe that if the polynomial degree s in (3. lb) is less or equal (r - 1) then 
the primitive functions of P, and P, are polynomials of degree les or equal r, and 
therefore H,(x; w) in (2.5) is exact except at I,,. Hence, 

R,(x; 5) = PL(X) for j<-1 (3.6a) 

R,(x; W) = PR(x) for j> 1, (3.6b) 

and consequently &, = xd in (3.3). Thus we have shown 

s<r- 1 =Z?(x;W)=W(x). (3.6~) 

We turn now to describe the algorithm defining Z?(x; G) for a general piecewise- 
smooth function w(x). As in the previous example we take Z?(x; W) in Zj to be 
Rj(x; W), unless Zj is suspected of having a discontinuity of w(x) in its interior. In 
the latter case we check whether 

Fj(Xj-,/2).Fi(Xj+1/*)~Oo, (3.7a) 

where 

qz,=${J= Rj- ,(x; W) dx + j++“’ Rj+ ,(x; W) dx - Gj. (3.7b) 
x,- 112 * 

If (3.7a) holds, then there is a root z = 0,, 

Fj( flj) = 0, xj-1/2~0j~xj+1/2 (3.7c) 

in the cell Zj, and we define Z?(x; W) in this cell to be 

Aj(x; W) = Rj- 1(X; W) for x~-~,~<x<B~ 
Rj+ 1(X; *I for Bj<x<xj+1,2. 

(3.7d) 

If (3.7a) does not hold (which means that either there is no root in Zi or that 
there is an even number of roots in Zj), we take hj(x; W) to be Rj(x; W). 

Let aj be some measure of the non-smoothness of the reconstruction R(x; W) in 
Ijv e.g., 

dk 
aj = dXk R(xj; W) , l<k<r-1, 

or a combination of such derivatives. Our algorithm identifies cells which are 
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suspect of harboring a discontinuity of w(x), as those which attain a local maxi- 
mum of “non-smoothness” of the reconstruction, i.e., 

Uj>Uj-1 and uj>/"j+l. (3.8b) 

We summarize the algorithm defining 2(x; W) by: If 

Uj>Oj-1, uj>,"j+l and Fj(xj- l/C!) . Fj(xj+ l/2) Go (3.9a) 

then 

itj(x; W) = 

Rj- 1(X; W) for xi- 1,2 < x < 0, 

Rj+ 1(X; WI for 6jixxxj+1,2; 
(3.9b) 

otherwise, 

&(x; W) = Rj(x; W). (3.9c) 

In an Appendix, we present analysis which motivates the choice of condition 
(3.8b). In the following we make several remarks and observations about 8(x; w), 
the “EN0 reconstruction with subcell resolution.” 

(1) @x; W) is indeed essentially non-oscillatory (ENO). This follows from the 
fact that local maxima are isolated; i.e., if (3.8b) holds for Zj, it cannot hold either 
for Zj-i or for lj+i. Consequently, if 2(x; G) is defined in Ii by the discontinuous 
(3.9b), then in Zj- i and Ii+ i it is defined by (3.9c); i.e., 

gj- ,(x; W) = Rip ,(x; W), fij+ ,(x; W) = Rj+ ,(x; t?). (3.10) 

(2) I If, as in the example (3.1), there is a discontinuity of w(x) in the interior 
of I,,, then 

uo = O(P); c-1=0(1), a,=O(l), (3.11a) 

where k is the order of the derivative used in (3.8a). 
Therefore, provided h is sufficiently small, we get that 

OO>(T-l, ~O>~l, (3.11b) 

and also as in (3.3b), 

Fob- l/d -~o(x,,d < 0. (3.11c) 

This shows that ff(x; W), as defined by the general algorithm (3.9), will recover any 
real discontinuity of w(x). 

(3) We observe that condition (3.9a) may hold also in the smooth part of 
w(x) near a local maximum of l&w/dxk). In this case the algorithm places a discon- 

581/83/l-11 
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tinuity at 0, in the interior of Ii. However, because of the smoothness of w(x) there 
and (1.6a), we have 

Rj, ,(O,; W) = ~(0,) + O(h’). (3.12) 

Consequently the jump is of the size of the reconstruction error U(F). We recall 
that the original EN0 reconstruction is discontinuous at {x~+~,~}. Therefore, the 
effect of the algorithm (3.9) is to replace the two discontinuities at xj- 1,2 and xi+ ,,z 
by a single one at 0,. 

(4) We observe that in order to evaluate Aj(x; W) in a cell Zj which contains 
a discontinuity at 6,, we have to find out whether x > 0, or x < 0,. Assuming 0, to 
be the only root of Fi(ej) = 0 in Zj, as is the case for a real discontinuity, we can 
use the logic of the interval-halving technique to evaluate fij(x; W) without actually 
computing (3,. To do so we calculate Fj(x) and compare its sign with that of 
Fj(xj- l/2) or Fj(xj+ l/2): 

1 Rj- 1(x; W) if 
Rj(xi ‘) = 

Fj(x) . Fj(xj- ,,J > 0 
Rj+ l(x; w) otherwise. 

(3.13) 

4. A SECOND-ORDER ACCURATE EN0 SCHEME WITH SUBCELL RESOLUTION 

In the following we describe how to incorporate the reconstruction with subcell 
resolution into the EN0 schemes, so as to improve their resolution of linear discon- 
tinuities. In this section, we present the derivation of (1.13), which is an improved 
version of the second-order accurate MUSCL-type scheme (1.11). In the next 
section, we shall generalize these ideas to any order of accuracy. 

We start with the piecewise-parabolic reconstruction R(x; $) which is detined by 
(2.4) with r = 3, i.e., 

Nx; w) = $ H,(x; w), (4.la) 

where W is the primitive function (2.lb) of w(x), and H&K; W) is a piecewise-cubic 
EN0 interpolation. Let i= i(j) be the left endpoint of the stencil (xi.- ii2, Xi+ i,*, 
x~+~,~, xi+& assigned to the interval (x~-~,~, xi+& by (2.8) or (2.9) or some 
other EN0 technique; j - 2 G i GJ The parabola describing R(x; 13) in 
(Xj- 112, xj+ 1/d is given by 

c. = d3H3k WI 

J dx3 
= (Wi+2-2G)i+ l+ Wi)/h2 

s, = d2Hdx; w) 
J 

dx2 x=x, 

=(~i+l-~i)/h+ 

R(x;w)= ti.-h’C. +Sj(x-xj)++j(x-xj)2. 
( ’ 24 J, 

(4.ld) 
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Our basic scheme remains 

uj”‘l = A(zj)E(t)L( .; u”) (4.2a) 

with the piecewise linear reconstruction 

L( x; I?) = wj + Sj( x - Xi), XEZj, (4.2b) 

but we use the parabolic reconstruction in order to define the slope Sj by (4.1~); as 
in (1.11) we approximate its numerical flux by 

f /+1/2 =K;2 =fR($+,,2, $+,,A? (4.3a) 

where 

vf+ 1,2 = vi” + h( 1 - AaJ’) Sj’/2, uf+1/2=$+l-h(l +laj”+,)Sj+,/2. (4.3b) 

We observe that by (2.3b) choosing Sj(in (4.4b) to be (4.1~) results in 

Sj= W,(Xj) + O(h2), (4.3c) 

which is one order higher than (1.9b). Consequently, as the UN0 scheme of Harten 
and Osher [6], this scheme is truly second order in all L, norms (unlike TVD 
schemes which are first order in L, and second order only in L,). 

Using the algorithm described in (3.9) we now deline &x; tt), which modifies 
R(x; tt) in (4.1) so that it includes a discontinuity in the interior of each cell Zj 
which meets condition (3.9a). Ideally, we would like to use the scheme 

v;+l = A(Z,)E(z)& .; fly, (4.4) 

which is third-order accurate in L,-sense (but only second-order accurate in the 
maximum norm). However, the proper approximation of the numerial flux of (4.2) 
is more complicated than (1.1 l), since it is one order more accurate in time. Bearing 
in mind that the main fault in the MUSCL-type scheme (1.11) that we want to 
correct is the smearing of linear discontinuities, we introduce subcell resolution into 
the scheme by correcting its numerical flux to account for the difference between 
using ff and L in the constant coefficient case. Thus we use the scheme 

(4.5a) 

(4.5b) 

and define gj+ ,,2 by the requirement that the scheme (4.5) becomes identical to 
(4.4) in the constant coefficient case 

u,+au,=O, a = const. (4.6) 
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This determines gi+ l,Z to be 

^ 
gj+ 112 = f f C&x,+ 112 - at; 0”) - L(x,+ 1,2 -at; v”)] dt. (4.7a) 

Since in the constant coefficient case 

we get that 

J+ lj2 = :/: &xi+ 1,2 - at; u”) dt. (4.7c) 

which shows that the scheme (4.5) is indeed identical to (4.4) in the constant coef- 
ficient case (4.6). Consequently, it is exact for discontinuous parabolic data of the 
form (3.1). 

Next we derive an expression for gj+ ,,2 in the constant coefficient case (4.7a); this 
will later be generalized to the nonlinear case by “freezing” the characteristic speed 
within the cell. 

In the constant coefficient case, (4.7a) can be rewritten as 

1 
f 

x, + I,2 
kfj+ 112 =; C&y; 0”) - Uy; ~‘71 dy. (4.8) x 

,+1/2-ar 

First let us assume a > 0. When 

then 

A(x; 0”) = Rj(x; v”) in Ii, (4.9a) 

1 1 
s 

x, + l/2 

gj+ l/2 =T [Rj(y; u”) - L(y; u”)] dy =; (v - 1)(2v - l)h2Cj; (4.9b) 
x, + 112 - m 

here v = la. 
When there is a discontinuity in the interior of Zj, I?j(X; v”) is given by (3.9b); i.e., 

ff(x; u”) = Rj- I (Xi onI, Xj- ,p,<x<o, 

Rj+ I(X; u"), ej<X<Xj+1,2, 
(4.10a) 

and we have to find out whether (xi, ,,2 -az) is larger or smaller than 8,. We recall 
that for (4.10a) to hold the relations 

Fj( ej, = 0, Fj(Xj-,,,).Fj(Xj+,,,)~O (4.10b) 

have to be satisfied, where F,(z) is defined by (3.7b). Using the basic idea of the 
interval-halving method for calculating a root of aigebraic equations, we can find 
out in which of the two cases we are without actually calculating 0, (see Remark (4) 
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at the end of the previous section). All we have to do is to compute Fj(xj+ ,,* - ar) 
and compare its sign to that of Fj(xj- I& i.e., 

F’(Xj + I/Z -~7).Fj(xj_,,,)>O~x~+,,,-a7<9~ (4.1Oc) 

Fj(Xj+ lp - UT). Fj(Xj- 112) GO * xj+ 112 - at 2 0,. (4.10d) 

To express the integral in (4.8) let us introduce the notation 

b,(y,,y2)=~y~R,(x;v”)dx=[(v~-~C,)y+fS.y2+~C,g3]Y2-h. (4.11) 
Yl--xl?l 

In case xi+ 1,2 - a7 > e,, we get from (4.8) and (4.10a) that 

-ar,Xj+,;,)-ar[v;+l(h-or)S;]j. (4.12a) 

When Xj + L/2 - az < ej, we use the fact that 

1 
I 

x,+w ,. 

i xj-l/Z 

R(x; u") dx = vi" 

to express the integral in (4.8) by 

jqx; v”) dx = jvi” - j++“2-=T jqx; 0”) dx 
x,- 112 

= j$ - jq+“2-“’ Rj- ,(x; v”) dx. 
x,- 112 

Rearranging terms we get in this case 

To summarize, the definition of gj+ ,,2 in the case a > 0 is 

a 
7gj+l/2=: (V- 1)(2V- l)h2Cj, (4.13a)+ 

unless the discontinuity condition (3.9a) holds for Zj; in the latter case we define 

(h-~r)(“~-~S,)-bj(xj-,/,,xj+,,,-nr) 

7t?j + l/2 = if Fj(Xj+ l/2 - ar) . Fj(Xj- 112) > 0 (4.13b)+ 

bj+l(xj+1/2-a7,xj+1/2 )-a7[vi”+;(h-a7)Sj] 

otherwise. 
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Similarly for a < 0 we get 

unless the discontinuity condition (3.9a) holds for Zj; in the latter case we define 

-bj- l(Xj- 1/2,xj-1/2-at)--at[vi"-~(h+az)]Sj 

if Fj(xj- 112) . Fj(Xj- 112 -UT) > 0 

z&?j - l/2 = 
bj+ ,(xj- 112 --at, xj+ 112 )-(h+a++S,) (4.13b)- 

otherwise. 

Note that the expressions (4.13) are formulated as the contribution of the cell Zj to 
the numerical flux $. Thus, if a>O, the contribution of from the Zj cell goes to 
gj+ ,,2, while if a < 0 this contribution goes to gj- ,,2. 

In Section 6, we extend the subcell resolution ideas to the Euler equations of gas 
dynamics. Since shocks are highly resolved by the original EN0 scheme, we apply 
subcell resolution only to the linearly degenerate characteristic field in order to 
improve the resolution of contact discontinuities. In this case the characteristic 
speed, which is the velocity of the flow, is not a constant but a function of the solu- 
tion itself. Nevertheless, we use the same expressions as in (4.13), except that a in 
Zj is replaced by aj, and v = &zj. We compute the corrective flux 2 in the following 
way: First we preset 2 = 0, and then we sweep over the mesh and collect contribu- 
tions to g from each cell: If aj > 0 we add the RHS of (4.13)+ to ii+ 1,2; if aj < 0 we 
add the RHS of (4.13)- to gji- 1,2. Note that if uj+ i < 0 and uj > 0, then gj+ 1,2 gets 
contributions from both Zj and Zj+ , . 

5. EXTENSION TO HIGH ORDER OF ACCURACY 

In this section, we describe the extension of the EN0 scheme with subcell resolu- 
tion to arbitrarily high order of accuracy. As in the second-order case (4.5), we 
introduce subcell resolution to the high order accurate EN0 schemes via a correc- 
tive flux gj+ 1,2; i.e., we consider the modified scheme 

01 + l = vj" - l(J+ l/2 -.f - l/2) J 
(5.la) 

A+ l/2 =J7-?~2 + 2j+ 112. (5.lb) 

First, we describe briefly the derivation offFFz2. We refer the reader to [7] for 
more details. Let L(x; G) be an rth order accurate reconstruction of w(x), such that 

5 J L(x; kc) dx = ttj. 
5 

(5.2a) 
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As before we denote the (r - 1)th degree polynomial describing L(x; W) in Zj by 
Lj(x; W), and express it in the following Taylor expansion 

r-l a 

Lj(x; W) = c k=O $ (X-xj)k9 d,=$L(xj;s). (5.2b) 

Let uj(x, t) be the solution to the initial value problem 

u, +f(uL = 0, 24(x, O)= Lj(x;G). (53a) 

Since the initial data in (5.3a) are analytic, we know from the Cauchy-Kowalewski 
theorem that uj(x, t) exists uniquely and it is analytic for some time 0 < t < t,. 
Therefore, its Taylor expansion around x = xi and t = 0 

&k--m = 

ak 

atmaxk - m uj(xj, Oh 

(5.3b) 

(5.3c) 

is valid for 0 < t 6 t, and x sufficiently close to xi. Using (5.3) we define vi(x, t) to 
be the truncated Taylor expansion 

uj(x, ~)=;~~&m$o (E) b)m,k-mrm(X-Xj)k-m~ (5.4a) 

IUj(X, t) - Uj(X, f)( = O(K). (5.4b) 

The coefficients B,,,k _ m in (5.4a) can be computed directly from the known coef- 
ficients {Bk} in (5.2b) (note that d,,, k = bk) by successive differentiation of the 
partial differential equation and substitution-see [7] for details. 

Finally, using an appropriate numerical quadrature to approximate the integral 
in (1.5a), we detinefT$2 to be 

Here flk and yk are the coefficients of the numerical quadrature. In the second-order 
case we use the midpoint rule: K= 1, pk = 1, yk = f. In the third- and fourth-order 
case we use the Gaussian quadrature: K=& Bl=&=f, rl=fU-l/d), 
y2 = i( 1 + l/d). Note that the second-order accurate scheme (1.11) is identical to 
(5.5) with r = 2. 

Next we describe the derivation of the corrective flux gj+ 1,2 in (5.lb). Let R(x; ti) 
be another reconstruction of w(x) which is at least rth order accurate. Using the 
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algorithm (3.9) we define J?(x; W), its modified version with subcell resolution. As 
in the second-order case (4.7a) we define gj+ 1,2 in the constant coefficient case to 
be 

A gj+ 112 =fJi CA(Xj+ 112 --at; 0”)~L(xj+ 112 -at; v”)] dt 

1 x, + 112 
=- (5.6) z J x +,,2-or C&Y; ~“1 -Lb; 01 &. 

I 

We note that relations (4.7b)-(4.7c) hold for any r; therefore, we can state that the 
scheme (5.1) in the constant coefficient case is identical to (4.4) in general. Conse- 
quently, if the reconstruction R(x; W) is exact for smooth polynomial data of degree 
r, then the EN0 scheme with subcell resolution (5.1) is exact for all initial data of 
discontinuous piecewise-polynomial functions of degree less than or equal to r. 

Let us denote 

4n(y, 3 ~2) = Jv2 C%b; 0”) - h,k u”)l dx, 
YI 

(5.7a) 

cn+*,2(Yl~ y2)= J ” [R,, ,(x; u”) - R,(x; u”)] dx. 
Yl 

(5.7b) 

Using these notations we can evaluate gj+ 1,2 by the following expressions: 
If a > 0, then 

riji+ l/2 =djfxj+ 1/2-a~, xj+ l/z), (5.8a)’ 

unless 

Oj>"j-ll, oj>bj+l, Fj(Xj+ l/2). f"(xj- 112) ~0, (5.8b)+ 

in which case 

dj(xj+1/2-ar~xj+1/2)+Cj+1~2(Xj+l~2-a~,xj+~~2) 

zij + l/2 = 
if FJxj+1/2) .Fj(xj+1/2-az)>O 

dj(xj+~/2-a~~xj+l/2)+ cj-I/2(xj-1/2, xj+t/2-aT), 

(5.8~) f 

otherwise. 

If a < 0, then 

unless 

rgj- l/2 = -dj(xj- l/29 xj- 112 -at), (5.8a)- 



EN0 SCHEMES 167 

in which case 

Vfj - l/2 = 

-dj(Xj- 1129 xj- l/2 - az) + cj+ l/2txj- l/2 - az9 xj+ l/2)9 

if Fj(Xj+1/2)'Fj(Xj-l1/2-Uz)>O 

-dj(Xj- I/27 xj- 112 - az) + cj- 1/2fxj- l/29 xj- l/2 - UT), 

otherwise. 

(5.8~) - 

We observe tht up to this point we have not specified L(x; W) and R(x; G). One 
possibility is to generalize the set up of the second-order accurate scheme in 
Section 3 as follows: Let r be the desired order of accuracy of the scheme. We start 
with a reconstruction via primitive function R(x; d) which is one order higher, i.e., 

R(x; W) = g H,, ,(x; W); (5.9a) 

here W is the primitive function of w and H,, 1 is the EN0 interpolation of 
Section 2. As before we denote the polynomial of degree r defining R(x; W) in j by 
Rj(x; I+) and rewrite (5.9a) as a finite Taylor expansion: 

dk+l 

&=- dXk+l Hr+l(xj; W). (5.9b) 

Using (5.9b) we now define L(x; W) to be 

where 

r-1 

Lj(X; G) = (Do + Ct,h’D,) + kzo 2 (X-Xj)k, (5.10a) 

0 for k odd 
lYk = 

2-k/(k + l)! for k even. 
(5.10b) 

Lj(x; W) is a polynomial of degree (r - 1) which reconstructs w(x) in Ii to O(M). 
We observe that 

W(Xj) + O(h2); (5.1Oc) 

this, as (4.3) does in the second-order case, eliminates some of the non-smoothness 
in the reconstruction eror which is due to the adaptive choice of stencils. Conse- 
quently, the EN0 scheme based on this reconstruction is rth-order accurate in all 
L, norms, including the maximum norm. Note that the correction to the first term 
in the RHS of (5.10a) takes care of the conservation property (5.2a), i.e., 

1 
i I, Lj(x; W) dx = Wj. 

I/ 
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Remark. There are other reasonable choices of L(x; W) and R(x; I?). We may 
choose 

L(x; W) = f H,(x; W), RW)=$H,+,(x; W), (5.11) 

or even 

L(x; G) = R(x; 15) = $ H,(x; a); (5.12) 

note that the expression for gj+1,2 in the latter case is much simpler since 
dj(y,, y2)=0 in (5.7a). 

6. EULER EQUATIONS OF GAS DYNAMICS 

In this section, we describe how to apply the scheme (5.1) to the Euler equations 
of gas dynamics for a polytropic gas: 

ut +f(uL = 0 (6.la) 

u = (P, m, EIT (6.lb) 

f(u) = qu + a p, 4PlT (6.1~) 

P= (y - l)(E- ipq2). (6.ld) 

Here p, q, P, and E are the density, velocity, pressure, and total energy, respec- 
tively; m = pq is the momentum and y is the ratio of specific heats. 

The eigenvalues of the Jacobian matrix A(u) = iYf/au are 

a,(u)=q-c, a2(u) = 4, 

where c= (~P/P)“~ is the sound speed. 
The corresponding right-eigenvectors are 

adu) = q + c, (6.2a) 

here 

is the enthalpy. 

H= (E+ P)/p = c2/(y - 1) + iq2 (6.2~) 

To compute a left-eigenvector system (l,(u)} which is bi-orthonormal to {rk(u)} 
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in (6.2b), we first form the matrix T(u), the columns of which are the right- 
eigenvectors in (6.2b) 

T(u) = (r1(~), rz(u), rdu)) 

and then define I,Ju) to be the kth row in T-‘(u), the inverse of T(u). We get 

Mu)=t(b*+q/c~ -hq-W,b,) 
l,(u) = (1 -b*, blq, -b,) 
W=4@*-q/G -hq+llc,b,), 

(6.2d) 

where 

b*=(y-1)/C* (6.2e) 

b, = $q*b,. (6.2f) 

Given {I$‘}, approximation to {ri(xi, t,)}, we use (6.2dt(6.2f) to evaluate the 
locally defined characteristic variables c$(u~), 

I?,” = l/Jl.j”)uy for i=j- r, . . . . j+r and k=l,2,3. (6.3a) 

Note that j is fixed in (6.3a) while i varies over the points which are relevant to 
the selection of the stencil for the cell Ii. Thus, the eigenvector system {Ik(t)in) I 
should be regarded in this context as a constant system of coordinates. Next we 
apply our scalar algorithm to each of the locally defined characteristic variables in 
(6.3a); i.e., we select a (possibly different) stencil for each of the characteristic 
variables and define Rj(x; G“) by (5.9); then we combine these scalar reconstruction 
by 

Rj(x; u”) = 1 Ri(x; ~iik(ui”>)r,(~,l,. 
k=l 

(6.3b) 

Note that the vector reconstruction (6.3) satisfies all the requirements listed in (1.6). 
As in Section 5 we rewrite the rth degree polynomial (6.3b) as a finite Taylor 

expansion, except that now the coefficients {Dk} in (5.9) are vectors. With this 
convention in mind we proceed to define the vector reconstruction Lj(x; u”) and the 
numerical flux JFy$ by (5.10) and (5.5), respectively. 

We turn now to describe the vector gj+ 1,2, which introduced the subcell resolu- 
tion to the numerical flux (5.1). As we have mentioned earlier in this paper., we use 
subcell resolution only in the linearly degenerate field (k = 2 in (6.2)) in order to 
improve the resolution of contact discontinuities. We do so by applying the algo- 
rithm (5.8) scalarly to the linearly degenerate characteristic field k = 2 as follows: 
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We define 

dk 
ol = ZAu;) dXk Rj(xj; u”) forsomek, l<k<r-1, (6.4) 

~(~)=~.“(U;){l:-,,*R,_,(x;V’)dX+I:l.li2Riii(X;Vl)d~-~U:j (6.5) 
I 

and, similarly, 

dj(y,, yz)= [‘* &(t)in)[Rj(x; a”)-Lj(x; u”)] dx (6.6a) 

Cm+I,z(Yl,Yz)= s ” 4(~,“)CRm+ I( X; u”) - R,(x; u”)] dx for m =j - 1, j. (6.6b) 
YI 

The characteristic speed of the linerly degenerate field is the flow velocity q; which 
can be of different sign in different regions. The definition of gj+ ,,* in (5.8) is 
formulated as the contribution of the cell Zj to the numerical flux. Therefore, it is 
convenient to program the calculation of the numerical flux in two stages: First we 
evaluate 

si + l/2 =3i"+;* (6.7) 

by (5.5) for all j. Then we sweep over the mesh again and collect the contribution 
of each cell to the numerical flux. Using FORTRAN conventions this can be 
described by: 

If q; > 0 then 

if qj” < 0 then 

Next we check whether the discontinuity condition 

Cj>gj-l, oj2aj+l, Fj(xj - I/Z) . Fj(Xj + 1,~) G 0 (6.9) 

is satisfied. If one or more of the inequalities in (6.9) is not true, we move on to 
the next cell. If all the inequalities in (6.9) are true we proceed to calculate as 
follows: 
If qj” > 0, then 

sj = cI+ 112 6 j-t 112 -tqT, xj+lj2) if Fj(xj+,/2)'Fj(xj+1/2-tq~)>O 

cj- l/Zfxj- l/23 xj+ l/2 - $n) otherwise 
(6.10a)+ 
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and 

If q; GO, then 

J-t l/2 =JTj+ 112 + hjr2(u~I. (6.10b) + 

sj = 
{ 

cj+ l/2 (x j-112 - rC7y9 xj+ l/2) if Fj(Xj+ l/2) * Fj(Xj- r/2 - rqy) > 0 
cj-1/2(xj-1/29 xj-1/2-zq~) otherwise 

(6.10a)) 

and 

J- l/2 =A- l/2 + 6jr2(uj”)* (6.10b)- 

Once we have completed the calculations in (6.10) we move on to the next cell. 

7. NUMERICAL EXPERIMENTS 

In this section, we present results of several computer experiments with the EN0 
schemes (5.5) and their modified version with subcell resolution (5.1); we refer to 
the latter as ENO/SR. In all these experiments we have used 

Oj’ l&n,; v.)l 

and, similarly, k = 1 in (6.4) for systems. In all the calculations reported in this sec- 
tion we have used a CFL number of 0.8. The continuous line in Figs. 2-8 represents 
the exact solution. The circles in all figures represent values of R(x,; u”) at the time 
specified. 

We start with the scalar constant coefficient problem 

u, + u, = 0, 4x3 0) = %l(x), -l<x<l, 

with periodic boundary conditions at x = + 1. In this case, we take 

f%I,U2)=Ul. 

(7.2) 

(7.3) 

First, we present numerical experiments with the highly discontinuous initial data 

1 

-x sin( $cx2), -l<x< -f 
uo(x + 0.5) = lsin(2nx)l I4 < 4 (7.4a) 

2x - 1 - sin( 3xX)/6 &<x<l. 

Note that the RHS of (7.4a) is shifted by (-0.5) for purposes of display. We 
initialized the calculation by taking 

1 
s 

x, + Ii2 

U’O=i xj-,,2 UO(X) dx=i Cu,(Xj+ l/2)- u,(Xj- 1/2)Iv (7.4b) 
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I: 
‘. 
i 

b 

FIG. 2. MUSCL scheme, - 1 <x g 1, - 1.25 by Q 1.25: (a) I = 2; (b) r = 8. 
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b 

FIG. 3. Second-order EN0 scheme, - 1 <x d 1, - 1.25 d y < 1.25: (a) I = 2; (b) I = 8. 
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a 

I--;! 

b 

;-” 

D. 
r i t i 

I J 

Fig. 4. Second-order ENO/SR, - 1 $x G 1, - 1.25 <y < 1.25: (a) t = 2; (b) I = 8. 
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i 

FIG. 5. Fourth-order EN0 scheme, - 1 <x < 1, - 1.25 $ y < 1.25: (a) t = 2; (b) t = 8. 

581/83/l-12 
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FIG. 6. Fourth-order ENO/SR, - 1 $ x< 1, - 1.25 < y < 1.25; (a) t = 2; (b) i= 8. 
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where U, is the primitive function of u,,(x). In Figs. 2 to 6, we show results with 
h = $=j (i.e., 60 cells) at: (a) t= 2 (after 1 period = 75 time-steps), (b) t= 8 (after 4 
periods = 300 time-steps). In Fig. 2, we show for sake of comparison the results’ of 
the MUSCL-scheme ( 1.11) with a slope SJ’ defined by 

s; = m(2(ui”+, - ui”), Qu;+ 1- uJ”- ,), 2(uj” - ui”- ,))/h; (7.5a) 

here m(x, y, z) is the minmod function 

m(x, Y, z) = 
s.min(lxl, 1~1, lzl), if sgn(x)=sgn(y)=sgn(z)=s 
0, otherwise. 

(7.5b) 

In Fig. 3, we present results of the second-order accurate EN0 scheme (4.3), and 
in Fig. 4 we show results of the corresponding second-order accurate ENO/SR (4.5) 
with (4.13)+. In Fig. 5, we present the results of the fourth-order accurate EN0 
scheme (5.5) with r = 4, and in Fig. 6 we show the corresponding results of the 
fourth-order accurate ENO/SR (5.1). 

Next we demonstrate the kind of accuracy to be expected from these methods in 
smooth problems by calculating a refinement sequence for the periodic constant 
coefficient problem (7.2) with initial data 

uo(x) = sin(7cx). 

In Table I, we show the results at t = 2 with h = b, i, & (i.e., 8, 16, and 32 cells, 
respectively). The quantity rc in this table is the “computational order of accuracy” 
which is evaluated from two successive calculations by assuming the error to be a 
constant time hrc; clearly this definition is meaningful only for h sufficiently small. 

TABLE I 

Refinement Sequence for u, + U, 5 0, u(x, 0) = sin xx 
with periodic boundary conditions 

I NO. of MUSCL rc 2nd Order rc 2nd Order 'rc 4th Order rc 4th Order rc 

Cells / EN0 ENOISR EN0 ENO/SR 
/ 

8 1.454 x10-l / ~ 6.568 x10-2 4.532 xIo-2 6.674 xIO-~ 8.592 x10-3 

j 1.52! 2.50 1.55 ' 4.90 4.37 

x 1O-2 E 16 5.506 ~ 1.164 x10-' 1.546 xIO-~ / 2.235 xIO-~ 4.146 xIO-~ 

B 1.45 i 2.19 2.66 4.67 4.32 

a8 32 2.019 x10-2 I 2.556 xIO-~ 2.445 xIO-~ 8.762 x10-6 2.082 xIO-~ 

8 7.040 x 10-2 4.068 x 1O-2 3.098 x10-' 4.080 xIO-~ 5.670 x~O-~ 

* 1.80 2.42 2.29 e 4.91, 4.80 

k 16 2.028 x 1O-2 7.600 xIO-~ 6.340 xIO-~ 1.353 x10-4 2.042 xIO-~ 

ad 1.91 2.21 2.84 4.67 4.74 

32 5.380 x 1O-3 1.638 xIO-~ 8.ROO xIO-~ , 5.300 x 10-6 7.630 x~O-~ 
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Note that in the constant coefficient case the ENO/SR schemes are one-order 
higher in the L,-sense than the corresponding EN0 schemes. 

We turn now to present numerical experiments with the Euler equation of gas 
dynamics (6.1). In these calculations we take y = 1.4 and fR(u,, u2) =SRoE(u,, u2), 
where we use Roe’s linearization [lo] to define 

with 

Sk = lk(c)(“, - u, ); (7.6b) 

here ak, &., and rk are the eigenVaheS and the left- and right-eigenvectors, respec- 
tively. ~2 is a particular average of u, and u2 which is defined by: 

B = (4 ~Y<~>. fi= (H&X,h E=(y-1)“2&i@; 
(7.6~) 

here ( ) denotes arithmetic average, i.e., 

(b) = t(h + b2). 

In Figs. 7 and 8, we show results of the Riemann initial value problem 

u, +f(u), = 0, u(x, 0) = uL5 
xc0 

uR, x>o 
(7.7a) 

with 

(pL, qL, PL) = (0.445, 0.698, 3.528); (PR, qR, PR) = (0.5, 0, 0.571). (7.7b) 

These calculations were performed with 100 cells, h = 0.1, CFL = 0.8, and 85 time- 
steps. In Fig. 7, we show the density computed by the second-order EN0 scheme 
and in Fig. 8 we show that of the corresponding ENO/SR. 

Finally, we present numerical solutions to the problem of two interacting blast 
waves: 

UL> O<x<O.l 
u(x, 0) = #MY 0.1 <x < 0.9 (7.8a) 

where 

PL=PM=pR= 1, qL=qM=qR=o, 

P, = 103, P, = lo-*, P, = lo*; 
(7.8b) 
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FIG. 7. Second-order EN0 scheme, 0 f x 4 1, 0 < y c 1.4: Density (85 time-steps). 

FIG. 8. Second-order ENO/SR, 0 <x < 1, 0 < y 6 1.4: Density (85 time-steps). 
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the boundaries at x = 0 and x = 1 are solid walls. This problem was suggested by 
Woodward and Colella as a test problem; we refer the reader to [ 111 where a com- 
prehensive comparison of the performance of various schemes for this problem is 
presented. We refer the reader to [7] for a detailed description of the implementa- 
tion of the solid wall boundary condition in the EN0 schemes. 

In Fig. 9, we show the density at t = 0.038 calculated by the second-order 
accurate ENO/SR with 800 cells and CFL = 0.8. The circles in this figure represent 
values of R(xi, p”); the continuous line is just the piecewise-linear interpolation of 
these values. Comparing these results to the solution presented by Woodward and 
Colella in [ 111, we find that it shows all the important features of the various inter- 
actions and thus can be considered a “converged” solution. We use this piecewise- 
linear interpolation of the calculation with 800 cells as the “exact solution” in 
Figs. 10 and 11. The circles in Figs. 10 and 11 are reconstructed values of density 
in a calculation with 200 cells. In Fig. 10, we show the calculation by the second 
order accurate EN0 scheme; in Fig. 11 we show the results of the corresponding 
ENO/SR. 

In the following, we make several remarks and observations concerning the 
numerical results presented in this section. 

(1) In all our calculations we find that the subcell resolution technique is 
capable of producing perfctly resolved linear discontinuities. Observe that if 
R(x; u”) has a single intermediate value at a discontinuity then this discontinuity is 
perfectly resolved by @x; 0”). 

FIG. 9. Second-order ENO/SR, O<xb 1, 0 <y< 7: Density at I =0.038 with 800 cells. 



EN0 SCHEMES 

FIG. 10. Second-order ENO, 0 <x < 1, 0 < y < 7: Density at r = 0.038 with 200 cells. 

181 

FIG. 11. Second-order ENO/SR, 0 < x < 1, 0 < y f 7: Density at I = 0,038 with 200 cells. 
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(2) When we study the effect of higher formal order of accuracy in the 
calculation of discontinuous data by the EN0 schemes, we find that the most 
noticable improvement is due to the reduction in smearing of the linear discon- 
tinuitites. However, when we compare the second-order and the fourth-order 
ENO/SR schemes we see that the improvement is primarily due to higher accuracy 
in the smooth part of the solution. Consequently, there is no sense in going to 
higher order when solving a Riemann IVP. To justify the increased computational 
cost associated with higher order, one needs a lot of structure in the smooth part 
of the solution. 

(3) Comparing the solution of the interacting blast waves (7.8) by the 
second-order ENO/SR to that of the PPM in [12], we find that the ENO/SR is 
more accurate. The ENO/SR highly resolves all three contact discontinuities in the 
problem, while for some reason the PPM well resolves two of the contact discon- 
tinuities but smears the one which results from the shock interaction. Another 
possible explanation for the difference in accuracy may be due to the fact that the 
ENO/SR is unifomly second-order accurate, while the PPM (because of its 
monotonicity constraints) reduces to first-order accuracy at points of local 
extremum. 

(4) The numerical results for the Euler equations of gas dynamics clearly 
demonstrate that shocks are highly resolved by the original EN0 schemes, and sub- 
cell resolution is not needed there. In any case, the expressions for gj+ rjz have to 
be modified before applying subcell resolution to a genuinely nonlinear field, as 
follows: (i) a; should be replaced by the speed of the shock. (ii) Dissipation propor- 
tional to (ai+,,,- aj- i,*) should be added to a centered rarefaction wave. For- 
tunately, if the discontinuity condition (3.9a) is met in the cell Zj, then R(x; 0”) is 
continuous at xjk i,* and no interaction terms need be added to the numerical flux. 
However, one has to account for the fact that the wave from the interior of Z, 
crosses its boundaries during the time-step. 

APPENDIX: DERIVATION OF THE DISCONTINUITY CONDITION 

The reconstruction Z?(x; W) is by definition discontinuous at (xj+ i,*}. In regions 
of smoothness of w(x) the jump of the reconstruction at xi+ ijz is of the order O(K). 
When a discontinuity of w(x) is located in the interior of Z,, then the discontinuities 
of the reconstruction at xjk,,* are fragments of that of w(x). (See Fig. lb.) 

In order to recover a possible discontinuity in the interior of each cell, we would 
like to associate the reconstruction with the boundaries of the cells {x,+ 1,2}, rather 
than the cells themselves. Let i?. ,+ ,,*(x; W) be the polynomial description of such a 
reconstruction which is valid in the neighborhood of xi+ 1,2. Once this is done we 
consider reconstructing w(x) in Z, by 

li\,(x; W) = 

i 

Rj- I/2(x; '1 for Xj-lj*<XXOj 

Rj+ I/Z(xi *I for Oj<x<x,+,,, (A.11 
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if possible, i.e., if there is a 0, such that 

Fj( e,, = 0, Xj- l/2 G ej < xj+ 1123 (A.2a) 

where 

(A.2b) 

If there is no such l3,, we define 

dj(x; W) = Rj(x; W). (A.3) 

The only thing which is left open at this point is the definition of fij+ 1,2(x; W). 
It is most natural within the framework of the EN0 reconstruction to select the 
“smoother” of Rj(x; W) and Rj+ ,(x; W); i.e., 

Rj+ ,(x; W) = 
Rj(x;@) if oj<oi+i 

Rj+ 1(X; @I if aj>trj+i’ 

Here oi is a monotone increasing function of the “non-smoothness,” such as (3.8a). 
Note that since R,(x; W) is associated with a stencil of points, (A.4) is equivalent to 
assigning a stencil to xj+ 1,2, the boundary of the cell. 

We observe that there is a certain ambiguity in the definition of jj(x; w) in (A.l), 
since 0, need not be unique. We remove most of this ambiguity by adopting a policy 
of “no unnnecessary changes,” and agree that 

iTj-l,2=Rj or Rj+1/2=Rj*l?j=Rj; 

i.e., if one of the candidates for extension into Zj is no smoother than the original 
Rj, we just retain the original definition in fij. From the definition (A.4) of Z? we 
can rewrite (AS) in terms of cri as 

Gj<Oj-1 or ajcaj+l =dj=Rj. (AS)’ 

Hence we conclude that we define kj(x; G) to be (A.1 ) only if 

Oj>Dj-1 and oj>aj+, (-4.6) 

which is the discontinuity condition (3.8b). In this case Rj- - R l/2- j-l and 
pj+1/2=Rl+l and the definition (3.9) follows. 
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